TraininG towards a society of data-saVvy inforMation prOfessionals to enable open leadership INnovation

Using Deep Learning for Title-Based Semantic Subject Indexing to Reach Competitive Performance to Full-Texts

Florian Mai Lukas Galke Ansgar Scherp

Kiel University, Germany

Joint Conference on Digital Libraries, June 3-6, 2018, Fort Worth

www.moving-project.eu

JCDL 2018 F. Mai

Deep Learning for Title-Based Semantic Subject Indexing [1/13]

Motivation: Titles vs. Full-Text

Good automatic semantic subject indexing methods based on metadata needed.

- Full-text not always available for text mining
- Metadata such as the title almost always available
- ► Title not competitive to full-text when the same number of training data is used [Galke et al., 2017]
- But far more labeled title samples (millions!) available than full-text data (several 100k)

Main Research Question

When all available titles are used, can deep learning close the performance gap between titles and full-texts?

- ► > 650k samples: deep learning outperforms traditional methods at text classification [Zhang et al., 2015].
- Deep learning for text classification [Zhang et al., 2015, Yang et al., 2016, Grave et al., 2017, Liu et al., 2017]
- Multi-label text classification [Huang et al., 2011, Rubin et al., 2012, Nam et al., 2014, Große-Bölting et al., 2015, Galke et al., 2017]

Deep Learning for Subject Indexing M 🔮 V I N G

- Employ a representative of each of the most common families of neural networks: MLPs, CNNs, LSTMs
- Frame subject indexing as multi-label classification problem
- ► All architectures share the same training procedure

Training Procedure

- Sigmoid at output layer: get output p_l for label l
- Minimize binary cross-entropy loss with Adam
- Assign label if $p_l > \theta$
- Tune θ on validation set during training
- Early stopping

M 🔮 V I N G

Base-MLP [Galke et al., 2017] (Baseline)

- ► TF-IDF bag-of-words with 25,000 most frequent unigrams
- 1 hidden layer with 1,000 units
- dropout after hidden layer with rate 0.5

MLP

- additionally 25,000 most frequent bigrams
- wider layers and deeper networks
- Batch Normalization when beneficial

CNN and LSTM

CNN

- ▶ 1 layer of 1D-convolution [Kim, 2014] over the text with different window sizes (2, 3, 4, 5, 8)
- dynamic max-pooling [Liu et al., 2017]
- plus fully-connected layer

LSTM

- "vanilla" LSTM [Greff et al., 2017]
- bidirectionality and (self-)attention [Yang et al., 2016]

Sequence length is limited to 250 for LSTMs and CNNs.

Remember!

We want to answer the question if the best title method can perform competitively to the best full-text method.

- Titles and full-texts are of different nature and therefore the best neural network architecture for titles is not necessarily the best for full-texts.
- For this reason, we tuned the architectures on one fold independently for titles and full-texts, resulting in very different solutions in some cases.

MOVING

Experimental Setup

- ► *T*1, *T*2, *T*4, *T*8, *T_{all}* work with titles, *Full* works with full-texts.
- ► T1 and Full contain the same publications. Tx contains x times as many samples as T1.
- We split T1/Full into 10 folds and perform a 10-fold cross-validation

	EconBiz	(STW)	PubMed (MeSH)		
	Title	Full-Text	Title	Full-Text	
D	1,064,634	70,619	12,834,026	646,513	

- Number of full-texts in PubMed $\approx 650k!$
- ▶ Number of full-texts in EconBiz << 650k!

Results for EconBiz

M 🔮 V I N G

Results for PubMed

Conclusion

M 🔮 V I N G

Main Result

 Using all titles is at least competitive to using the full-text (titles 3% lower on PubMed and 9.4% higher on EconBiz).

Side Results

- The strategy to employ deep learning was largely successful since the more complex models tend to benefit more from additional samples.
- CNNs perform rather poor despite their prominence in text classification studies from recent years.

Reproducibility

The source code, configurations, and title datasets can be found on GitHub: https://github.com/florianmai/Quadflor. Feel free to fork and run additional experiments!

Need more details?

An extended version of the paper (my master thesis) is also available online (see https://github.com/florianmai/Quadflor) and contains a lot more details:

 Intermediate results of tuning neural network architectures and hyperparameters

MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092

MOVING

References I

M 🔮 V I N G

- Galke, L., Mai, F., Schelten, A., Brunsch, D., and Scherp, A. (2017).
 Using titles vs. full-text as source for automated semantic document annotation.
 In K-CAP, page 9.
- Grave, E., Mikolov, T., Joulin, A., and Bojanowski, P. (2017). Bag of tricks for efficient text classification. In *EACL*, pages 427–431.
- Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2017).
 Lstm: A search space odyssey.
 IEEE TNNLS.

References II

M 🔮 V I N G

- Große-Bölting, G., Nishioka, C., and Scherp, A. (2015).
 A comparison of different strategies for automated semantic document annotation.
 In *K-CAP*, page 8. ACM.
- Huang, M., Névéol, A., and Lu, Z. (2011). Recommending mesh terms for annotating biomedical articles. JAMIA, 18(5):660–667.
- Kim, Y. (2014).

Convolutional neural networks for sentence classification. In *EMNLP*, pages 1746–1751.

Liu, J., Chang, W.-C., Wu, Y., and Yang, Y. (2017). Deep learning for extreme multi-label text classification. In *SIGIR*, pages 115–124. ACM.

References III

M 🔮 V I N G

Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., and Fürnkranz, J. (2014). Large-scale multi-label text classification - revisiting neural networks.

In ECML, pages 437-452.

 Rubin, T. N., Chambers, A., Smyth, P., and Steyvers, M. (2012).
 Statistical topic models for multi-label document classification. *JMLR*, 88(1):157–208.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. J., and Hovy, E. H. (2016).
 Hierarchical attention networks for document classification.
 In NAACL-HLT, pages 1480–1489.

References IV

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for text classification. In *NIPS*, pages 649–657.

- MLP much more complex than Base-MLP: wider (2,000 units) or deeper (two layers with Batch Normalization)
- CNN uses large feature map size (400) except on one of the full-text datasets (100)
- Dynamic max-pooling only on full-texts, not beneficial on titles
- Multiple LSTM layers do not benefit the performance, but widening a single layer does (up to cell size 1,536)
- LSTMs are relatively small on full-texts (cell size 512 and 1,024, respectively), but larger on titles.

M 🚯 V I N G

Tuning Threshold During Training I M 🔮 V I N G

- ► Ideally: At each validation step, find the value for θ that yields the best F_1 -score.
- However, doing a grid search over the entire space at each step is too costly.
- Observation: Increasing θ trades off recall for precision.
- We could make the assumption that for $\forall \theta : P(x) + R(x) = S$

F_1 -score

$$F_1(x) = \frac{2 \cdot P(x) \cdot R(x)}{P(x) + R(x)}$$
$$= \frac{2 \cdot P(x) \cdot R(x)}{S}$$

Tuning Threshold During Training IIM 🔮 V I N G

- ► Under the assumption, F₁(x) is a concave function of P and R with maximum at P = R.
- Heuristic approximation of best θ: At each validation step, we only consider a small neighborhood of the current value.
- Concretely: Start with $\theta_0 := 0.2$. At each step *i*,

$$\theta_{i} := \arg \max_{\theta \in \{-k \cdot \alpha + \theta_{i-1}, \dots, k \cdot \alpha + \theta_{i-1}\}} F_{1}(D_{val}; c_{i}, \theta), \qquad (1)$$

where we set $\alpha = 0.01$ and k = 3, i.e., we try 7 threshold values at each step.

Explaining the Performance Drop M 🔮 V I N G

The distributions of T1/Full and T_{all} are quite different:

- ▶ T1/Full tend to come from more recent years than T_{all} .
- ► As a result, the label distributions differ, too.
- ► Training set of T2, ..., T_{all} contain many labels that never appear in the test set.

	EconBiz			PubMed		
	L	rel. gain	abs. gain	L	rel. gain	abs. gain
T1	4,849	-	-	26,267	-	-
T2	5,165	6.5%	316	27,135	3.3%	868
T4	5,230	1.3%	65	27,447	1.1%	312
T8	5,357	2.4%	127	27,626	0.7%	179
T _{all}	5,661	5.7%	304	27,773	0.5%	147