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Motivation: Titles vs. Full-Text M&VING

Good automatic semantic subject indexing methods based on
metadata needed.

v

Full-text not always available for text mining

v

Metadata such as the title almost always available

v

Title not competitive to full-text when the same number of
training data is used [Galke et al., 2017]

But far more labeled title samples (millions!) available than
full-text data (several 100k)

v

Main Research Question

When all available titles are used, can deep learning close the
performance gap between titles and full-texts?
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Related Work MGOVING

» > 650k samples: deep learning outperforms traditional
methods at text classification [Zhang et al., 2015].

» Deep learning for text classification [Zhang et al., 2015,
Yang et al., 2016, Grave et al., 2017, Liu et al., 2017]
» Multi-label text classification [Huang et al., 2011,

Rubin et al., 2012, Nam et al., 2014,
GroRe-Bélting et al., 2015, Galke et al., 2017]
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Deep Learning for Subject Indexing MG VIN G

» Employ a representative of each of the most common families
of neural networks: MLPs, CNNs, LSTMs

» Frame subject indexing as multi-label classification problem

» All architectures share the same training procedure

Training Procedure
» Sigmoid at output layer: get output p; for label /

v

Minimize binary cross-entropy loss with Adam

v

Assign label if p; > 6

v

Tune 6 on validation set during training

v

Early stopping
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MLPs MOVING

Base-MLP [Galke et al., 2017] (Baseline)
» TF-IDF bag-of-words with 25,000 most frequent unigrams
» 1 hidden layer with 1,000 units
» dropout after hidden layer with rate 0.5

MLP
» additionally 25,000 most frequent bigrams

» wider layers and deeper networks

» Batch Normalization when beneficial
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CNN and LSTM MOVING

CNN

» 1 layer of 1D-convolution [Kim, 2014] over the text with
different window sizes (2, 3, 4, 5, 8)

» dynamic max-pooling [Liu et al., 2017]

» plus fully-connected layer

LSTM
» “vanilla” LSTM [Greff et al., 2017]
» bidirectionality and (self-)attention [Yang et al., 2016]

Sequence length is limited to 250 for LSTMs and CNNs.
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A Note on Tuning the Methods MOVING

Remember!

We want to answer the question if the best title method can
perform competitively to the best full-text method.

» Titles and full-texts are of different nature and therefore the

best neural network architecture for titles is not necessarily the
best for full-texts.

» For this reason, we tuned the architectures on one fold

independently for titles and full-texts, resulting in very different
solutions in some cases.
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Experimental Setup

» T1, T2, T4, T8, T,y work with titles, Full works with
full-texts.

MOVING

» T1 and Full contain the same publications. Tx contains x

times as many samples as T1.

» We split T1/Full into 10 folds and perform a 10-fold
cross-validation

3
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Datasets MGOVING

EconBiz (STW) PubMed (MeSH)
Title | Full-Text | Title | Full-Text

| [D] | 1,064,634 | 70,619 | 12,834,026 | 646,513 |

» Number of full-texts in PubMed ~ 650k!
» Number of full-texts in EconBiz << 650k!
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Results for EconBiz

Fl-Score
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Results for PubMed

Fl-Score
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Conclusion MGOVING

Main Result

» Using all titles is at least competitive to using the full-text
(titles 3% lower on PubMed and 9.4% higher on EconBiz).

Side Results
» The strategy to employ deep learning was largely successful
since the more complex models tend to benefit more from
additional samples.
» CNNs perform rather poor despite their prominence in text
classification studies from recent years.
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Thank You for Your Attention! M&VING

Reproducibility

The source code, configurations, and title datasets can be found on
GitHub: https://github.com/florianmai/Quadflor. Feel free
to fork and run additional experiments!

Need more details?

An extended version of the paper (my master thesis) is also
available online (see
https://github.com/florianmai/Quadflor) and contains a lot

more details:
» Intermediate results of tuning neural network architectures and
hyperparameters

MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092
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Choice of Hyperparameters MOVING

JCDL 2018

MLP much more complex than Base-MLP: wider (2,000 units)
or deeper (two layers with Batch Normalization)

CNN uses large feature map size (400) except on one of the
full-text datasets (100)

Dynamic max-pooling only on full-texts, not beneficial on titles

Multiple LSTM layers do not benefit the performance, but
widening a single layer does (up to cell size 1,536)

LSTMs are relatively small on full-texts (cell size 512 and
1,024, respectively), but larger on titles.
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Tuning Threshold During Training M@V IN G

v

Ideally: At each validation step, find the value for # that yields
the best Fi-score.

However, doing a grid search over the entire space at each
step is too costly.

v

Observation: Increasing 6 trades off recall for precision.
We could make the assumption that for V0 : P(x) + R(x) = S

v

v

F1-score

4
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Tuning Threshold During Training IM@ VIN G

» Under the assumption, Fi(x) is a concave function of P and R
with maximum at P = R.

» Heuristic approximation of best §: At each validation step, we
only consider a small neighborhood of the current value.

» Concretely: Start with 6y := 0.2. At each step /,
0; ;= arg max Fi(Dyas; i, 0), (1)
96{7100&#9[,1,...,k-a+9/,1}

where we set « = 0.01 and k = 3, i.e., we try 7 threshold
values at each step.
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Explaining the Performance Drop MG VING

The distributions of T1/Full and T, are quite different:
» T1/Full tend to come from more recent years than T,.
» As a result, the label distributions differ, too.

» Training set of T2, ..., T,y contain many labels that never
appear in the test set.

EconBiz PubMed
IL| ‘ rel. gain ‘ abs. gain IL| ‘ rel. gain ‘ abs. gain
T1 || 4,849 - - 26,267 - -
T2 || 5,165 | 6.5% 316 27,135 | 3.3% 868
T4 || 5230 | 1.3% 65 27,447 | 11% 312
T8 | 5357 | 2.4% 127 27,626 | 0.7% 179
T || 5,661 | 5.7% 304 27,773 | 0.5% 147
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