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Motivation: Titles vs. Full-Text

Good automatic semantic subject indexing methods based on
metadata needed.

I Full-text not always available for text mining
I Metadata such as the title almost always available
I Title not competitive to full-text when the same number of

training data is used [Galke et al., 2017]
I But far more labeled title samples (millions!) available than

full-text data (several 100k)

Main Research Question
When all available titles are used, can deep learning close the
performance gap between titles and full-texts?
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Related Work

I > 650k samples: deep learning outperforms traditional
methods at text classification [Zhang et al., 2015].

I Deep learning for text classification [Zhang et al., 2015,
Yang et al., 2016, Grave et al., 2017, Liu et al., 2017]

I Multi-label text classification [Huang et al., 2011,
Rubin et al., 2012, Nam et al., 2014,
Große-Bölting et al., 2015, Galke et al., 2017]
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Deep Learning for Subject Indexing

I Employ a representative of each of the most common families
of neural networks: MLPs, CNNs, LSTMs

I Frame subject indexing as multi-label classification problem
I All architectures share the same training procedure

Training Procedure
I Sigmoid at output layer: get output pl for label l
I Minimize binary cross-entropy loss with Adam
I Assign label if pl > θ

I Tune θ on validation set during training
I Early stopping
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MLPs

Base-MLP [Galke et al., 2017] (Baseline)
I TF-IDF bag-of-words with 25,000 most frequent unigrams
I 1 hidden layer with 1,000 units
I dropout after hidden layer with rate 0.5

MLP
I additionally 25,000 most frequent bigrams
I wider layers and deeper networks
I Batch Normalization when beneficial
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CNN and LSTM

CNN
I 1 layer of 1D-convolution [Kim, 2014] over the text with

different window sizes (2, 3, 4, 5, 8)
I dynamic max-pooling [Liu et al., 2017]
I plus fully-connected layer

LSTM
I “vanilla” LSTM [Greff et al., 2017]
I bidirectionality and (self-)attention [Yang et al., 2016]

Sequence length is limited to 250 for LSTMs and CNNs.
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A Note on Tuning the Methods

Remember!
We want to answer the question if the best title method can
perform competitively to the best full-text method.

I Titles and full-texts are of different nature and therefore the
best neural network architecture for titles is not necessarily the
best for full-texts.

I For this reason, we tuned the architectures on one fold
independently for titles and full-texts, resulting in very different
solutions in some cases.
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Experimental Setup

I T1,T2,T4,T8,Tall work with titles, Full works with
full-texts.

I T1 and Full contain the same publications. Tx contains x
times as many samples as T1.

I We split T1/Full into 10 folds and perform a 10-fold
cross-validation
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Datasets

EconBiz (STW) PubMed (MeSH)
Title Full-Text Title Full-Text

|D| 1,064,634 70,619 12,834,026 646,513

I Number of full-texts in PubMed ≈ 650k!
I Number of full-texts in EconBiz << 650k!
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Results for EconBiz
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Results for PubMed
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Conclusion

Main Result
I Using all titles is at least competitive to using the full-text

(titles 3% lower on PubMed and 9.4% higher on EconBiz).

Side Results
I The strategy to employ deep learning was largely successful

since the more complex models tend to benefit more from
additional samples.

I CNNs perform rather poor despite their prominence in text
classification studies from recent years.
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Thank You for Your Attention!

Reproducibility
The source code, configurations, and title datasets can be found on
GitHub: https://github.com/florianmai/Quadflor. Feel free
to fork and run additional experiments!

Need more details?
An extended version of the paper (my master thesis) is also
available online (see
https://github.com/florianmai/Quadflor) and contains a lot
more details:

I Intermediate results of tuning neural network architectures and
hyperparameters

MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092
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Choice of Hyperparameters

I MLP much more complex than Base-MLP: wider (2,000 units)
or deeper (two layers with Batch Normalization)

I CNN uses large feature map size (400) except on one of the
full-text datasets (100)

I Dynamic max-pooling only on full-texts, not beneficial on titles
I Multiple LSTM layers do not benefit the performance, but

widening a single layer does (up to cell size 1,536)
I LSTMs are relatively small on full-texts (cell size 512 and

1,024, respectively), but larger on titles.
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Tuning Threshold During Training I

I Ideally: At each validation step, find the value for θ that yields
the best F1-score.

I However, doing a grid search over the entire space at each
step is too costly.

I Observation: Increasing θ trades off recall for precision.
I We could make the assumption that for ∀θ : P(x) + R(x) = S

F1-score

F1(x) =
2 · P(x) · R(x)
P(x) + R(x)

=
2 · P(x) · R(x)

S
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Tuning Threshold During Training II

I Under the assumption, F1(x) is a concave function of P and R
with maximum at P = R .

I Heuristic approximation of best θ: At each validation step, we
only consider a small neighborhood of the current value.

I Concretely: Start with θ0 := 0.2. At each step i ,

θi := argmax
θ∈{−k·α+θi−1,...,k·α+θi−1}

F1(Dval ; ci , θ), (1)

where we set α = 0.01 and k = 3, i.e., we try 7 threshold
values at each step.
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Explaining the Performance Drop

The distributions of T1/Full and Tall are quite different:
I T1/Full tend to come from more recent years than Tall .
I As a result, the label distributions differ, too.
I Training set of T2, . . . , Tall contain many labels that never

appear in the test set.

EconBiz PubMed
|L| rel. gain abs. gain |L| rel. gain abs. gain

T1 4,849 - - 26,267 - -
T2 5,165 6.5% 316 27,135 3.3% 868
T4 5,230 1.3% 65 27,447 1.1% 312
T8 5,357 2.4% 127 27,626 0.7% 179
Tall 5,661 5.7% 304 27,773 0.5% 147
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